Classes and Structs

Introduction to Classes and Structs

A “class” is the template for creating objects in C#. A “struct” is similar to a class, but is
value type as opposed to the class which is reference type. A typical class contains a set
of variables and associated methods.

Class

Class variables:
Varaiblel, Variable2, ...

Class methods:
Mehrod1, Method?2, ...

Some of the variables and methods might be public, and some might be private. The
public variables and methods can be accessed from outside the class, but the private
variables and methods are accessible only from inside the class.

Class

Hidden

A

> Public variables

Public methods |«

\ 4
Private variables

< Properties

Private methods |«

A

A

Classes can be instantiated, which means that one can produce difference instances of the
same class. Since the class is just a template, it is only when an instance of a class is
created that memory gets allocated.

© Mehrdad Negahban, 2003. 1



Classes and Structs

As an example of creating a class, let us create the Ladder class described in the
introduction. Let us give this class three variables: name, material and height. Also, let us
have a method in the class that calculates the number of steps. Finally, let us force the
materials to be selected from a list of three material types: wood, steel, aluminum. To
construct this class, start a new application in Visual Studio and call it HardwareStore
and insert in it a new class with the name Ladder. Visual studio will create a skeleton for
the Ladder class that looks like this

namespace HardwareStore
{
/// <summary>
/// Summary description for Ladder.
/// </summary>
public class Ladder

{
public Ladder ()

{
//
// TODO: Add constructor logic here
//

}

Let us take a look at what Visual Studio did for us. In the namespace of our application
HardwareStore, Visual Studio created a public class Ladder and a method with the same
name Ladder. The class was put in the namespace HardwareStore because it is our
application namespace and will make this class available for use in other parts of our
application. The actual class declaration is only this part:

public class Ladder

{
public Ladder ()

{
//
// TODO: Add constructor logic here
//

}

The method Ladder() inside the class Ladder is the constructor of the class. The
constructor is used to provide any initialization when creating an instance of the class.
We will soon see how this works. For now, add the following to the class declaration.

namespace HardwareStore
{
/// <summary>
/// Summary description for Ladder.
/// </summary>
public class Ladder

12/1/2003 2



public string name;

public MaterialType material;
public double height;

public Ladder ()

//

// TODO: Add constructor logic here
//

material = MaterialType.wood;
height = 5;

}
public double Steps|()

{
return this.height*12.0/8.0;

}
public enum MaterialType

{

wood, steel, aluminum

}
}

Note that we have added three variables to the class, a string type name , a Material Type
type material, and a double type height. The string type and double type are described
under standard variable types, but the Material Type type is an “enum” that we ourselves
have declared as having three possible values: wood, steel, aluminum. Enums are used
when we need to select from a fixed number of choices. Also note that in our constructor
method Ladder(), we have selected to make the default material type to be wood and the
default ladder height to be five feet. These will be set every time we create a new instance
of the Ladder class. Also note that we have another method declared called Steps that
provides us the number of steps.

Now that the Ladder class has been declared, let us go back to the HardwareStore Form1
and add a button to it so that we get

© Mehrdad Negahban, 2003. 3



Classes and Structs

™ Form/1

Double click on the button to get the method that is run when the button is clicked and
create an array of three Ladders as shown and output the results to the MessageBox.

Ladder[] myLadders = new Ladder[3];
for (int i=0; 1i<3; i++)

{

myLadders[i] = new Ladder();
}
myLadders[0] .name ="HomeLadder";
myLadders[1l] .name = "WorkLadder";
myLadders[1l] .height = 9;
myLadders[1l] .material = Ladder.MaterialType.aluminum;
myLadders[2] .name = "OtherLadder";
myLadders[2] .material = Ladder.MaterialType.steel;

string ladderInfo = "";
for (int 1=0; 1i<3; 1i++)

{

ladderInfo += "Ladder name: "+myLadders[i].name +"\n";

ladderInfo += " Material: "+myLadders[i].material.ToString() +"\n";
ladderInfo += " Height: "+myLadders[i].height.ToString() +"\n";
double steps = mylLadders[i].Steps();

ladderInfo += " Steps: "+steps.ToString() +"\n";

ladderInfo += "\n";

}
MessageBox.Show (ladderInfo) ;

If you build and run the application, when you press the button you will get the
following:

12/1/2003



Ladder name: HomelLadder
Material: wood
Height: 5
Skeps: 7.5

Ladder name: WarkLadder
Material: alurminum
Height: 9
Skeps: 13,5

Ladder name: OtherLadder
Material; steel
Height: 5
Skeps: 7.5

You will note several things. First, we created the array of three Ladders through the
command line:

Ladder[] myLadders = new Ladder[3];

At this point no memory is allocated to the three Ladders. Next, we initialized each one
of the three myLadders[0], myLaddrs[1], and myLadders[2] through the use of the for
loop:

for (int i=0; i<3; i++)
{

myLadders[i] = new Ladder () ;

}

This step is essential since C# will not allocate memory until we initialize each of the
three myLadders. If we had tried to assign values to any of the variable of these three
Ladders before we did this, the compiler would return an error. Finally, we assigned each
Ladder a name and set other parameters. You will note that even though we did not set
the material or height of the myLadders[0], when we instantiated myLadders[0] the
default values of wood and 5 feet were automatically assigned to these variables.

Let us now take a more formal look at the class and struct in C#.

Class declaration

The minimum declaration for a class is as follows:

public class ClassName

{
public ClassName ()

{

© Mehrdad Negahban, 2003. 5



Classes and Structs

//
// TODO: Add constructor logic here
//

}

where className is any name you choose for the class. Each class contains at least one
method of the same name which is its constructor method. In this case, “public class
ClassName” is the declaration of the class and “public ciassname()” is the constructor
method.

Once a class is declared, objects of this type can be created and used. The process of
creating an object of a particular class type is called instantiation and, and as in the case
of variables, is a two step process. First a variable of the class type is declared and then
an instance of it is instantiated. For example, if we wanted to create an instance of our
example class Ladder, with the name myLadder, we would do this with the following
code:

Ladder myLadder;
myLadder = new Ladder();

This process can also be done in one line with the code:

Ladder mylLadder = new Ladder();

Variables and their scope

We have already seen the use of three different variables in our Ladder class. The
declaration of these variables was put inside the class, but outside all methods. We also
declared each variable to be public. That is, we instructed the compiler that all objects
accessing an instance of this class can have access to these variables.

As arule, a variable that is declared within a structure, is accessible from within it and
from all other structures that reside within the original structure. Typically a structure is
marked by “{}” so that the variable X declared within structure B in the following
example is accessible from within structure B and C, but not from A

{ Structure A
{ Structure B
Varaible X
{ Structure C

}

12/1/2003



Methods

Methods are functions that provide functionality to the class. We have already seen the
step method that returns the calculated number of steps for our Ladder. In general the
declaration of a method is as follows:

MethodScope Keyword ReturnType MethodName(VariabelType ArgumentlIName, ...)

The MethodScope can be public or private. The possible Kywords are static, virtual,
abstract, override, external. The ReturnType may be any type such as int, double, ..., or
any user defined types.

If a method is declared as public, it can be accessed from outside the class, but if defined
as private it can only be accessed from methods inside the class.

If a method is declared as static, it will be available without the need to instantiate a
member of the class. You can directly access it using the class name, and therefore
cannot use variables that would only be created with the instance of a class.

The arguments of a method can be prefixed with the out or ref modifiers. These are used
to control how variables are transferred to the method. If the ref modifier is used, then
only the address of the variable is transferred to the method and so any changes done to
the variable in the method will effect the original value of the variable in the program
calling the method. If the modifier ouf is used, the method will not need the variable to be
instantiated as its value before entering the method is not used. The prefix ref and out
when added to the declaration of a method, must also be used when calling the method.
For example, a method declared as:

private void myMethod( ref double myVariable)

when called must be called as:

double x;
myMehtod (ref x);

Properties

Properties are a convenient way of controlling access to the variables of class and also for
implementing functionality in this access. The typical property declaration in C# would
be as follows:

public class ClassName

{
private VariableType variable;
public VariableType PropertyName

{
get

© Mehrdad Negahban, 2003. 7



Classes and Structs

return variable;

variable = value;
}
}
public ClassName ()
{
//
// TODO: Add constructor logic here
//

}

In this case, a variable that is private is allowed to be accessed through the property,
either to set its value or to retrieve its value. If the variable is not to be changed, the set
clause can be removed. If the variable is not to be retrieved, the get clause can be
removed. Other functionality can be added by adding code within the get or set “{}”.

If in our Ladder example, the material of the ladder was to be determined based on the
height, we could provide this type of functionality by the following code:

public class Ladder

{
public string name;
private MaterialType material;
private double height;

public double Height
{
get

return height;

height = value;
if (height < 8)
{
material = MaterialType.wood;
}
else if( height < 12 )

material = MaterialType.aluminum;

material = MaterialType.steel;

}

public MaterialType Material

12/1/2003



return material;

public Ladder ()
{

//

// TODO: Add constructor logic here
//

material MaterialType.wood;

;ublic double Steps|()

{ return this.height*12.0/8.0;
;ublic enum MaterialType

{ wood, steel, aluminum

}

In this example, since we have made material and height private variables, they are no
longer accessible by other elements of the application. To set the height, in this case we
need to use the property “Height,” which in the process of setting the height, also selects
the material. Since the material is being selected by the selection of the height, only a get

method is provided for the “Material” property.

In our Form1 button event code replace the previous code by the following:

Ladder[] myLadders = new Ladder([3];
for (int i=0; 1<3; i++)
{

myLadders[i] = new Ladder () ;
}

myLadders[0] .name ="HomeLadder";

myLadders[1l] .name = "WorkLadder";
myLadders[2] .name = "OtherLadder";

[
[
myLadders[1] .Height = 9;
[
[

myLadders[2] .Height = 16;

ww .
’

string ladderInfo
for (int 1=0; 1i<3; 1i++)

{

ladderInfo += "Ladder name: "+myLadders[i].name +"\n";

ladderInfo += " Material: "+myLadders[i].Material.ToString() +"\n";
ladderInfo += " Height: "+myLadders[i].Height.ToString() +"\n";
double steps = mylLadders[i].Steps();

ladderInfo += " Steps: "+steps.ToString() +"\n";

ladderInfo += "\n";

}
MessageBox.Show (ladderInfo) ;

© Mehrdad Negahban, 2003.



Classes and Structs

The output of your application will now look as follows:

X
Ladder name: Homeladder
Material; wood

Height: 5

Steps: 7.5

Ladder name: WorkLadder
Material: aluminum
Height: 9
Skeps: 13.5

Ladder name; OtherLadder
Material; steel

Height: 16

Skeps: 24

The constructor of a class can be overloaded, which means we can have several
constructors, each with a different set of arguments. For example, if we wanted to have
the option to set the material and height during the instantiation, we could redo the code
for our class as follows:

public Ladder ()
{

//

// TODO: Add constructor logic here
//

material MaterialType.wood;

height = 5;
}
public Ladder (MaterialType LadderMaterial, double LadderHeight)

{
material = LadderMaterial;
height = LadderHeight;

}

The compiler will select the constructor to be used based on what the arguments are. As
long as the arguments have a unique signature (number of arguments and types are not
the same), then the compiler can choose the proper constructer to use based on the
arguments provided. Now change the code in the application button event as follows:

for (int 1=0; 1i<2; 1i++)
{

myLadders[i] = new Ladder();
}
myLadders[0] .name ="HomeLadder";
myLadders([1l] .name = "WorkLadder";
myLadders[1l] .Height = 9;

12/1/2003 10



myLadders[2] = new Ladder (Ladder.MaterialType.wood, 16);

Note that the myLadders[2] will use our new constructor because of the arguments
provided. The result of running this new application will be:

Ladder name: Homeladder
Makerial: wood

Height: 5
Skeps: 7.5

Ladder name; WorkLadder
Makerial: aluminum
Height: 9

Skeps: 13.5

Ladder name:
Material: vwood
Height: 16
Skeps: 24

Classes are reference type

One thing to be aware of is that classes are of reference type. That is, they have an
address stored in the stack, but the actual class variables are stored in the heap. When we
assign one instance of Ladder to another, the only thing that happens is that the address is
copied, so that both instances now point to the same location in the heap. As a result,
when you make a change to variables of one of these classes, the value for the other class
also automatically changes since it is pointing to the same memory location.

As an example, change the Hardware store button event click method by adding the one
line “myLadders[1] = myLadders([0];” as follows:

Ladder[] myLadders = new Ladder[3];
for(int 1=0; i<2; 1i++)
{

myLadders[i] = new Ladder();
}

myLadders[0] .name ="HomeLadder";

myLadders[1l] = myLadders[0];

myLadders[1l] .name = "WorkLadder";

myLadders[1l] .Height = 9;

myLadders[2] = new Ladder (Ladder.MaterialType.wood, 16);
string ladderInfo = "";

© Mehrdad Negahban, 2003. 11



Classes and Structs

for (int 1=0; 1<3; 1++)

{

ladderInfo += "Ladder name: "+myLadders[i].name +"\n";

ladderInfo += " Material: "+myLadders[i].Material.ToString()
+"\n";

ladderInfo += " Height: "+myLadders[i].Height.ToString () +"\n";

double steps = myLadders[i].Steps();

ladderInfo += " Steps: "+steps.ToString() +"\n";

ladderInfo += "\n";

}
MessageBox.Show (ladderInfo) ;

Since myLadders[1] and myLadders[0] are now both pointing to the same memory
location, any changes to either will effect the value for both of them. The result of

running this program will be:

Ladder name: WiorkLadder
Material: aluminum
Height: 9
Steps: 13.5

Ladder name: WarkLadder
Material: aluminum
Height: 9
Skeps: 13.5

Ladder name:
Material; wood
Height: 16
Skteps: 24

As can be seen, both myLadders[0] and myLadders[1] have the same values.

Frequently, when we assign one instance of a class to another, as we did for
myLadders[0] and myLadders[1], we want the new object to be a copy of the original.
This can be done through defining a special method for the class to copy the contents into
a new instance of the object.

Inheritance

Inheritance is a powerful way of duplicating the variables and methods of one class in
another class without writing any additional code. For example, if we had a
Hardwareltem class that included itemPrice as a variable and Tax as a method, we could
have our Ladder class inherit from it and then each Ladder would have an itemPrice and a
method to calculate tax without really writing any additional code. The syntax of
introducing inheritance in a class is as follows:

12/1/2003 12



public class ClassName : ParentClassName

{
public ClassName ()

{
//
// TODO: Add constructor logic here
//

Note that the only difference here is the addition of “: ParentClassName” to indicate that
the class is inheriting from another class. There is only single inheritance in C# so that a
class can only inherit from one other class, even though the class it inherits from can
inherit from another class, and so one.

Following our example, create a new class named Hardwareltem and add change it to
look as follows:

public class HardwareItem

{
private double itemPrice;
public double ItemPrice

{
get
{

return itemPrice;

itemPrice = value;

}

public HardwareItem()

{
//
// TODO: Add constructor logic here
//

}

public double Tax()

{

return itemPrice*0.067;

}

Also, let us change the declaration of the Ladder class to

public class Ladder : HardwarelItem
Now in the click event method of your button on Form1, add a price for each of

myLadders. Note that automatically a ItemPrice property has been added. If you also add
the lines to display each Ladder’s price and tax, you will have a code as follows:

© Mehrdad Negahban, 2003. 13



Classes and Structs

Ladder[] myLadders =

for (int 1=0;

{

myLadders[i] =

}
myLadders[0]

myLadders[0]

myLadders[1]
myLadders([1]
myLadders[1]
myLadders|[2]

myLadders[2].

i<2; i++)

new Ladder
.name ="HomeLadder";
.ItemPrice = 100;

= myLadders[0];

new Ladder[3];

()7

.name = "WorkLadder";

.Height = 9;

= new Ladder (Ladder.MaterialType.wood,

ItemPrice = 150;

string ladderInfo = "";

for (int i=0;

{

ladderInfo +=
ladderInfo
ladderInfo

1<3; i++)

4= "
4= "

Material
Height:

double steps = myLadders|

ladderInfo += " Steps: "
ladderInfo += " Price:
ladderInfo += " Tax:
ladderInfo += "\n";

}

MessageBox.Show (ladderInfo) ;

"Ladder name:

16);

"+myLadders[i] .name +"\n";
: "+myLadders[i] .Material.ToString()

+"\nl|;

"+myLadders[i] .Height.ToString () +"\n";

i].Steps();
+steps.ToString ()

The result of running the program will now be:

EE

12/1/2003

Ladder name; Wwaorlkladder
Material: aluminum
Height: 9
Steps: 13.5
Price: 100
Tax: 6.7

Ladder name: WorlkLadder
Material: aluminm
Height: 9
Skeps: 13.5
Price: 100
Tax: 6.7

Ladder name:
Material: wood
Height: 16
Steps: 24
Price: 150
Tax: 10,05

+ll\n";

"+myLadders[i].Tax () .ToString()

+"\nll;

"+myLadders[i] .ItemPrice.ToString () +"\n";

14



Enum

Enums are ordered sets of constants. They are used when a fixed number of choices are
available. As in the example above, an enum is declared in a class, just like a method, and
is accessed through the instance of the class.

Structs

Structs are similar to classes, but are value type. A default constructor is created for the
struct so there is no need to create a constructor. Structs are intended for small data
structures since every time you assign a struct to another struct, all the struct must be
copied. This is in contrast to the class which is a reference type and when assigned only
the address is copied.

© Mehrdad Negahban, 2003. 15



	Classes and Structs
	Introduction to Classes and Structs
	Class declaration
	Variables and their scope
	Methods
	Properties
	Classes are reference type
	Inheritance
	Enum
	Structs


