

File and Directory Access

Introduction to Files and File Access

File and directory access will covers the processes of creating and deleting files and
directories, opening and reading files, and reading and writing to files. By default, file
access operations assume the file is in the same directory as the application. To access a
file that is in another directory, the absolute or relative address of the file needs to be
provided. An example of an absolute addresses would be:

D:\CLASS\CSApplicationDevelopment\CSNotes\07-FileAccess

Since C# string formatting recognizes “\” as preceding an escape sequence command, we
need to modify this the address by using the escape sequence for the backslash which is
“\\”. Therefore, when providing an address we need to type it as

D:\\CLASS\\CSApplicationDevelopment\\CSNotes\\07-FileAccess

Another way of accomplishing the same result is by using “@” which makes the string
recognized as a literal. In this case we would type the address as

@“D:\CLASS\CSApplicationDevelopment\CSNotes\07-FileAccess”

This is particularly useful since one can cut and paste directory paths without needing to
change all the “\” to “\\”.

The directory and file access methods are provided under the namespace:

System.IO

To get started create a new project with Visual Studio and drag and drop a button onto
Form1. View the code and at the top add the namespace System.IO by incerting “using
System.IO;” into the using block. It should now look like

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.IO;

Directory manipulation

Creating and deleting directories are done though the “Directory” class in System.IO. The
methods of the Directory class that we will be looking at are all static and can therefore

© Mehrdad Negahban, 2003. 1

File and Directory

be used directly without instantiating an instance of the class. To create a directory
named “myDirectory” in the current directory you can add the following command to the
Click method of your button:

Directory.CreateDirectory("myDirectory");

If you run your application and press the button, you should see the directory created in
the directory that the application is. You can create a directory at any location on the hard
drive (given you have access to do so) through providing the full address.

The current directory from which the application was launched can be obtained through
“Application.StartupPath”. This can be used to develop paths relative to the current
startup directory. For example, the following command lines first get the application
startup directory and then create a directory in the directory two levels up in the directory
tree:

string AppPath = Application.StartupPath;
Directory.CreateDirectory(AppPath+@"\..\..\myDirectory");

The Directory class has several useful methods among which are:

Method Return value Function
CreateDirectory(string path) void Creates the directory and all

other needed directories in
the path indicated

Delete(string path) void Deletes specified directory
Exists(string path) bool Returns true if directory

exists
GetCurrentDirectory() string Gets current directory
GetDirectoryRoot(string path) string Gets root of path
GetFiles(string path) string[] Gets array of strings

containing files in directory
indicated by path

Move(string sourceDirName,
string destDirName)

void Moves directory at path
address sourceDirName to
address destDirName

SetCurrentDirectory(string path) void Sets current directory to the
one designated by the path

File manipulation

File manipulation refers to creating, deleting and moving files. Reading and writing to a
file will be shown in the next section. File manipulations are done through static methods
of the class “File” in System.IO. For example, to create a file with the name “myFile.txt”

12/1/2003 2

in the currently nonexistent directory “myDirectory” located in the current directory we
can use the command lines:

Directory.CreateDirectory("myDirectory");
File.Create(@"myDirectory\myFile.txt");

If the directory exists, there is no need to create it, even though CreateDirectory will do
nothing if the directory exists. Other useful methods of the File class are:

Method Return value Function
Create(string path) void Create the file with given

address path (The directory
needs to exist)

File.Copy(string sourceFileName,
string destFileName)

void Copy file sourceFileName
to destFileName

Delete(string path) void Delete indicated file
Exists(string path) bool Returns true if indicated file

exists
Move(string sourceFileName,
string destFileName)

void Moves file
sourceFileName to
destFileName

Writing to a file

File access is done through string or character interfaces. We will focus on string
methods. Writing to files is done through the “StreamWriter” class. To create the file and
create and connect a StreamWriter to a file “myDirectory\myFile.txt” we can use the
following command lines that first create the directory, then create and connect the
StreamWriter “sw” to the file "myDirectory\myFile.txt"), then writes "This is a
test of writing to a file." as a line into this files, and finally closes the file :

Directory.CreateDirectory("myDirectory");
StreamWriter sw = File.CreateText(@"myDirectory\myFile.txt");
sw.WriteLine("This is a test of writing to a file.");
sw.Close();

In this example one line was written. Repeating the WriteLine method would add lines to
the end of the file. An entire file can be written using the Write method of StreamWriter.
For example, the text containing ten lines will be written using the following code:

StreamWriter sw = File.CreateText(@"myDirectory\myFile.txt");
string textOfFile = "";
for(int i=0; i<10;i++)
{
 textOfFile +="This is line "+i.ToString()+".\n";
}
sw.Write(textOfFile);
sw.Close();

© Mehrdad Negahban, 2003. 3

File and Directory

This same effect can be obtained using the WriteLine method:

StreamWriter sw = File.CreateText(@"myDirectory\myFile.txt");
for(int i=0; i<10;i++)
{
 sw.WriteLine("This is line "+i.ToString()+".");
}
sw.Close();

To append to the end of an existing file without overwriting it, the StreamWriter can be
instantiated with the AppendText method:

StreamWriter sw = File.AppendText(@"myDirectory\myFile.txt);

Such a StreamWriter will write to the end of the existing file.

Reading from a file

Reading of files is done using the StreamReader class. In the following code a
StreamReader “sr” is declared and instantiated using File.OpenText method, then the
content of the file is read line by line using the StreamReader.ReadLine method, and
finally the instance of the StreamReader is closed to release the file.

StreamReader sr = File.OpenText(@"myDirectory\myFile.txt");
for(int i=0; i<10;i++)
{
 string textOfLine = sr.ReadLine();
 MessageBox.Show(textOfLine);
}
sr.Close();

This code would read one line at a time and display it in the MessageBox.

The entire content of the file can be read into one string through the ReadToEnd method
of the StreamReader. The following code shows an example of this.

StreamReader sr = File.OpenText(@"myDirectory\myFile.txt");
string textOfFile = sr.ReadToEnd();
sr.Close();
MessageBox.Show(textOfFile);

The output would be:

12/1/2003 4

The methods Read and ReadBlock of SteamReader can be used to read arrays of
characters.

To read an entire file without knowing how many lines are in the file, one can use the
following code:

StreamReader sr = File.OpenText(@"myDirectory\myFile.txt");
string textOfFile = "";
sr.BaseStream.Seek(0, SeekOrigin.Begin);
while (sr.Peek() > -1)
{
 textOfFile += sr.ReadLine()+"\n";
}
sr.Close();
MessageBox.Show(textOfFile);

In this code, the BaseStream.Seek method is used to find the start of the file and the Peek
method is used to find the end of the file, and the ReadLine method is used to read each
line until it gets to the end of the file.

Writing and Reading comma formatted data

Structured data that is comma formatted can be written to and read from a file. The two
dimensional array “data” is written to a file with comma seperators by the following
code:

double[,] data = {{1,2,3,4},{2,3,4,5},{3,4,5,6}};
StreamWriter sw = File.CreateText(@"myDirectory\myFile.txt");
for(int i=0; i<3; i++)
{
 string line ="";
 for(int j=0; j<4; j++)
 {
 line += data[i,j].ToString()+", ";

© Mehrdad Negahban, 2003. 5

File and Directory

12/1/2003 6

 }
 sw.WriteLine(line);
}
sw.Close();

The following code will read the data in the file back to an array:

StreamReader sr = File.OpenText(@"myDirectory\myFile.txt");
sr.BaseStream.Seek(0, SeekOrigin.Begin);
int i=0;
while (sr.Peek() > -1)
{
 string line = sr.ReadLine();
 for(int j=0; j<4; j++)
 {
 int flag = line.IndexOf(",");
 data[i,j] = Convert.ToDouble(line.Substring(0,flag));
 MessageBox.Show("data = "+data[i,j].ToString());
 line = line.Remove(0,flag+1);
 }
 i++;
}

This can be modified to read different data types such as float or int.

	File and Directory Access
	Introduction to Files and File Access
	Directory manipulation
	File manipulation
	Writing to a file
	Reading from a file
	Writing and Reading comma formatted data

